WordNet

Marina Sedinkina
- Folien von Desislava Zhekova -

CIS, LMU

marina.sedinkina@campus.lmu.de

December 18, 2018

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 1/75

Outline

0 WordNet

e Lesk Algorithm

e Finding Hypernyms with WordNet
e Relation Extraction with spaCy

© References

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

WordNet

WordNet

@ WordNet is a large lexical database of English
(semantically-oriented)

@ Nouns, verbs, adjectives and adverbs are grouped into sets of
synonyms (synsets)

@ Basis for grouping the words is their meanings.

dog
noun verb
senses senses

sense#l sense#n sense#1 sense#fn

synonyms Synonyms Synonyms Synonyms

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

WordNet

WordNet

Eng|ISh WOI’dNet On“ne http://wordnet.princeton.edu

WordNet Search - 3.1

Word to search for: [motorcar

Search WordNet

Display Options: (Select option to change) 4 Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence”

Noun

e S: (n) car, auto, automobile, machine, motorcar (a motor vehicle with four

wheels; usually propelled by an internal combustion engine) "he needs a car
to get to work”

o direct hyponym [full hyponym

e S: (n) ambulance (a vehicle that takes people to and from
hospitals)

¢ S: (n) beach wagon, station wagon, wagon, estate car, beach

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 4/75

http://wordnet.princeton.edu

WordNet

http://globalwordnet.org/

Wordnets in the World

Language = Resource name Developer(s) Contact Online License Other Resources
Browsing
Afrikaans Afrikaans North-West University, South| Gerhard van NO FOR
WordNet & Africa &? Huyssteen & Ané ACADEMIC
Bekker & USE &
Albanian AlbaNet& Vlora University, Vlora, Ervin Ruci & YES&
Albania &
Arabic | Arabic WordNet & Arabic WordNet& Horacio NO
Rodriguez &

Multilingual | Open Multilingual | Linguistics and Multilingual Francis Bond & NO

(Arabic/ Wordnet & Studies, NTU &

English/
Malaysian/
Indonesian/

Finnish/

Hebrew/
Japanese/

Persian/

Thai/
French)

Marina Sedinkina- Folien von Desislava Zhekova

age Processing and Pyth

http://globalwordnet.org/

WordNet

WordNet

@ NLTK includes the English WordNet (155,287 words and 117,659
synonym sets)

@ NLTK graphical WordNet browser: nltk.app.wordnet ()

Current Word: Next Word: || Search
Help Shutdown

noun

e S: (noun) wordnet (any of the machine-readable lexical databases modeled after the
Princeton WordNet)

e S: (noun) WordNet, Princeton WordNet (a machine-readable lexical database
organized by meanings; developed at Princeton University)

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

WordNet

Senses and Synonyms

Consider the sentence in (1). If we replace the word motorcar in (1)
with automobile, to get (2), the meaning of the sentence stays pretty
much the same:

@ Benz is credited with the invention of the motorcar.
@ Benz is credited with the invention of the automobile.

= Motorcar and automobile are synonyms.

Let’'s explore these words with the help of WordNet)

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

WordNet

Senses and Synonyms

1 nltk .corpus wordnet wn
2N >>> wn.synsets("motorcar")
] [Synset("car.n.01")]

@ Motorcar has one meaning car.n.01 (=the first noun sense of
car).

@ The entity car.n.01 is called a synset, or "synonym set", a
collection of synonymous words (or "lemmas"):

| >>> wn.synset("car.n.01").lemma_names ()
LA ["car", "auto", "automobile", "machine",
motorcar"]

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

WordNet

Senses and Synonyms

Synsets are described with a gloss (= definition) and some example
sentences

N >>> wn.synset("car.n.01").definition ()

»d "a motor vehicle with four wheels; usually propelled
by an internal combustion engine"

>>> wn.synset("car.n.01").examples ()

["he needs a car to get to work"]

&~ W

Marina Sedinkina- Folien von Desislava Zhekova -

Language Processing and Python

WordNet

Senses and Synonyms

Unlike the words automobile and motorcar, which are unambiguous
and have one synset, the word car is ambiguous, having five synsets:

>>> wn.synsets("car")
[Synset("car.n.01"), Synset("car.n.02"), Synset("car.
n.03"), Synset("car.n.04"), Synset("cable_car.n.

01")]1]
3 synset wn.synsets("car"):
4 synset.lemma_names ()
5 -
) ["car", "auto", "automobile", "machine", "motorcar"]
A ["car", "railcar", "railway_car", "railroad_car"]
8 ["car", "gondola"]
CN ["car", "elevator_car"]

["cable_car", "car"]

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 10/75

WordNet

The WordNet Hierarchy

Hypernyms and hyponyms (“is-a relation”)
@ motor vehicle is a hypernym of motorcar
@ ambulance is a hyponym of motorcar

\
motor vehicle

‘.

motorcar

(compact) (gasguzzler)

hatch-back

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 11/75

WordNet

The WordNet Hierarchy

>>> motorcar = wn.synset("car.n.01")

>>> types_of_motorcar = motorcar.hyponyms ()

>>> types_of_motorcar[26]

Synset("ambulance.n.01")

>>> sorted ([lemma.name() synset types_of_motorcar
lemma synset.lemmas ()])

N ["Model_T", "S.U.V.", "SUV", "Stanley_Steamer", "ambulance"

, "beach_waggon", "beach_wagon", "bus", "cab", "

compact", "compact_car", "convertible", "coupe", "

cruiser", "electric", "electric_automobile", "

electric_car", "estate_car", "gas_guzzler", "hack", "

hardtop", "hatchback", "heap", "horseless_carriage", "

hot—rod", "hot_rod", "jalopy", "jeep", "landrover", "

limo", "limousine", "loaner", "minicar", "minivan", "

pace_car", "patrol_car", "phaeton", "police_car", "

police_cruiser", "prowl_car", "race_car", "racer", "

racing_car" ...]

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 12/75

WordNet

The WordNet Hierarchy

1
2
]
4
5
6
7

© ©

>>> motorcar. hypernyms ()
[Synset("motor_vehicle.n.01")]

>>> paths = motorcar.hypernym_paths()
>>> len (paths)

2

>>> [synset.name() synset paths[0]]

["entity .n.01", "physical_entity.n.01", "object.n.01", "whole.n.02
", "artifact.n.01", "instrumentality .n.03", "container.n.01",
"wheeled_vehicle.n.01", "self—propelled_vehicle.n.01", "
motor_vehicle.n.01", "car.n.01"]

>>> [synset.name() synset paths[1]]

["entity.n.01", "physical_entity.n.01", "object.n.01", "whole.n.02
", "artifact.n.01", "instrumentality .n.03", "conveyance.n.03"
, "vehicle.n.01", "wheeled_vehicle.n.01", "self—
propelled_vehicle.n.01", "motor_vehicle.n.01", "car.n.01"]

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 13/75

WordNet

More Lexical Relations

Meronyms and holonyms
@ branchis a meronym (part meronym) of tree
@ heartwood is a meronym (substance meronym) of tree

@ forestis a holonym (member holonym) of tree

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 14/75

WordNet

More Lexical Relations

>>> wn.synset("tree.n.01").part_meronyms ()

[Synset("burl.n.02"), Synset("crown.n.07"), Synset("
stump.n.01"), Synset("trunk.n.01"), Synset("limb.
n.02")1]

>>> wn.synset("tree.n.01").substance_meronyms ()

[Synset("heartwood.n.01"), Synset("sapwood.n.01")]

>>> wn.synset("tree.n.01").member_holonyms ()

[Synset("forest.n.01")]

K]
4
5
6

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 15/75

WordNet

More Lexical Relations

Relationships between verbs:
@ the act of walking involves the act of stepping, so walking entails
stepping
@ some verbs have multiple entailments

>>> wn.synset("walk.v.01").entailments ()
[Synset("step.v.01")]

>>> wn.synset("eat.v.01").entailments ()
[Synset("swallow.v.01"), Synset("chew.v.01")]

>>> wn.synset("tease.v.03").entailments ()
[Synset("arouse.v.07"), Synset("disappoint.v.01")]

(o220 ¢) B “N G I\ B

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 16/75

WordNet

More Lexical Relations

Some lexical relationships hold between lemmas, e.g., antonymy:

>>> wn.lemma("supply.n.02.supply").antonyms ()

[Lemma("demand.n.02.demand")]

>>> wn.lemma("rush.v.01.rush").antonyms ()

[Lemma("linger.v.04.linger")]

>>> wn.lemma("horizontal.a.01. horizontal") .antonyms ()

[Lemma("vertical.a.01.vertical"), Lemma("inclined.a.
02.inclined")]

>>> wn.lemma("staccato.r.01.staccato").antonyms ()

[Lemma("legato.r.01.legato")]

o

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 17/75

WordNet

More Lexical Relations

You can see the lexical relations, and the other methods defined on a
synset, using dir (). For example:

1 nltk

2 nltk .corpus wordnet wn

]

4 (wn.synsets ("motorcar"))

58 >>>[Synset('car.n.01")]

6

7 (dir (wn.synsets ("motorcar")[0]))

ttf >>>[... ,'hyponyms', ‘'instance_hypernyms', 'instance_hyponyms', '
jen_similarity ', 'lch_similarity ', 'lemma_names', 'lemmas', '
lexname', 'lin_similarity ', 'lowest_common_hypernyms', '
max_depth', 'member_holonyms', 'member_meronyms', 'min_depth'
, 'name', 'offset', 'part_holonyms', 'part_meronyms', '
path_similarity ', 'pos', 'region_domains', 'res_similarity "',
'root_hypernyms ', 'shortest_path_distance', 'similar_tos"', '
substance_holonyms ', 'substance_meronyms', 'topic_domains', '
tree', 'unicode_repr', 'usage_domains', 'verb_groups', '

wup_similarity ']

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 18/75

WordNet

Semantic Similarity

If two synsets share a very specific hypernym (low down in the
hypernym hierarchy), they must be closely related.

>>> right = wn.synset("right_whale.n.01")
>>> orca = wn.synset("orca.n.01")

>>> minke = wn.synset("minke_whale.n.01")
>>> tortoise = wn.synset("tortoise.n.01")
>>> novel = wn.synset("novel.n.01")

>>> right.lowest_common_hypernyms (minke)
[Synset("baleen_whale.n.01")]

>>> right.lowest_common_hypernyms(orca)
[Synset("whale.n.02")]

>>> right.lowest_common_hypernyms(tortoise)
[Synset("vertebrate.n.01")]

>>> right.lowest_common_hypernyms(novel)
[Synset("entity .n.01")]

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

WordNet

Semantic Similarity

We can quantify this concept of generality by looking up the depth of

each synset:

0 N O~ WD =

>>> Wn

.synset("baleen_whale.n.01").min_depth ()
.synset("whale.n.02").min_depth ()
.synset("vertebrate.n.01").min_depth ()

.synset("entity.n.01").min_depth ()

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 20/75

WordNet

Semantic Similarity

Similarity measures have been defined over the collection of WordNet
synsets that incorporate this insight

@ path_similarity () assigns a score in the range 0-1 based
on the shortest path that connects the concepts in the hypernym
hierarchy

@ -1isreturned in those cases where a path cannot be found
@ Comparing a synset with itself will return 1

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 21/75

WordNet

Semantic Similarity

1 >>> right.path_similarity (minke)

2 0.25

<} >>> right.path_similarity (orca)

‘4 0.16666666666666666

58 >>> right.path_similarity (tortoise)
G| 0.076923076923076927

74 >>> right.path_similarity (novel)

| 0.043478260869565216

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

WordNet

Similarity between nouns

@ ("car", "automobile")
@ synsetsi("car") = [synset1, synsetiz, Synsetis]
nltk.corpus.wordnet.synsets ("car")

@ synsets2("automobile") = [synselr1, Synsetoo, Synsetos]
nltk.corpus.wordnet.synsets ("automobile")

@ consider all combinations of synsets formed by the synsets of the
words in the word pair ("car”, "automobile”)
[(synseti1, synset), (synseti, synsetz), (synseti, synsetys), ...]
@ determine score of each combination e.g.:
synsety1 .path_similarity (synsetyq)

@ determine the maximum score — indicator of similarity

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 23/75

WordNet

Semantic Similarity

Can you think of an NLP application for which semantic similarity will
be helpful?

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 24/75

WordNet

Semantic Similarity

??7?

Can you think of an NLP application for which semantic similarity will
be helpful?

| \

Suggestion

Coreference Resolution:
| saw an orca. The whale was huge.

N

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 25/75

WordNet

Polysemy

@ The polysemy of a word is the number of senses it has.
@ The noun dog has 7 senses in WordNet:

nitk .corpus wordnet wn
num_senses=len (wn.synsets ("dog","n"))

1

2

3

4 (num_senses)

5 prints 7

@ We can also compute the average polysemy of nouns, verbs,
adjectives and adverbs according to WordNet.

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 26/75

WordNet

Polysemy of nouns

We can also compute the average polysemy of nouns.
@ Fetch all lemmas in WordNet that have a given POS:
nltk.corpus.wordnet.all_lemma_names (POS)

1 nltk .corpus wordnet wn
2 all_lemmas=set(wn.all_lemma_names("n"))
] (len(all_lemmas))

“N >>>117798

@ Determine meanings of each lemma:
nltk.corpus.wordnet.synsets (lemma, pos) returns
list of senses to a given lemma and POS, e.g. for "car”

1 nltk .corpus wordnet wn

2} meanings=wn.synsets("car","n")

3 (meanings)

iy S>>

5] [Synset('car.n.01'), Synset('car.n.02"'), Synset('car.n.03"'),
6 Synset('car.n.04"'), Synset('cable_car.n.01")]

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 27175

WordNet

Polysemy of nouns

4
5
6
7

© ©

average_polysemy (part_of_speech):

lemmas = set(nltk.corpus.wordnet.all_lemma_names (
part_of_speech))

nr_of_synsets = 0
lemma lemmas:
nr_of_synsets += len(nltk.corpus.wordnet.synsets (lemma,
pos=part_of_speech))

nr_of_synsets / len(lemmas)

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 28/75

Lesk Algorithm

Lesk Algorithm

@ classical algorithm for Word Sense Disambiguation (WSD)
introduced by Michael E. Lesk in 1986

@ idea: word’s dictionary definitions are likely to be good indicators
for the senses they define

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 29/75

Lesk Algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family
s2: burned stuff the solid residue left

when combustible material is burned

Table: Two senses of ash

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 30/75

Lesk Algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family
s2: burned stuff the solid residue left

when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1s2 This cigar burns slowly and
creates a stiff ash

Table: Disambiguation of ash with Lesk’s algorithm

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 31/75

Lesk Algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family
s2: burned stuff the solid residue left

when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1s2 This cigar burns slowly and
creates a stiff ash

Table: Disambiguation of ash with Lesk’s algorithm

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 32/75

Lesk Algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family
s2: burned stuff the solid residue left

when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1s2 This cigar burns slowly and
01 creates a stiff ash

Table: Disambiguation of ash with Lesk’s algorithm

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 33/75

Lesk Algorithm

Lesk Algorithm: Example

Sense Definition
s1: tree a tree of the olive family
s2: burned stuff the solid residue left

when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1s2 The ash is one of the last trees
299 to come into leaf

Table: Disambiguation of ash with Lesk’s algorithm

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 34/75

Lesk Algorithm

Lesk Algorithm: Example

Sense Definition
si: tree a tree of the olive family
s2: burned stuff the solid residue left

when combustible material is burned

Table: Two senses of ash

Score = number of (stemmed) words that are shared by sense
definition and context

Scores Context
s1s2 The ash is one of the last trees
10 to come into leaf

Table: Disambiguation of ash with Lesk’s algorithm

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 35/75

Lesk Algorithm

Lesk Algorithm

>>> nltk .wsd lesk
>>> sent = ["I", "went", "to"
deposit", "money", "."]
3
4 IS (lesk(sent, "bank","
LN Synset("savings_bank.n.02")

Marina Sedinkina- Folien von Desislava Zhekova -

. "the", "bank", "to", "

n"))

36/75

Language Processing and Python

Lesk Algorithm

Lesk Algorithm

The definitions for "bank" are:

>>> nltk.corpus wsordnet wn
>>> ss wn.synsets ("bank"):
(ss, ss.definition())
Synset('bank.n.01') sloping land (especially the slope beside a body of water)
Synset('depository_financial_institution.n.01") a financial institution that accepts

deposits channels the money into lending activities
Synset('bank.n.03"') a long ridge pile
Synset('bank.n.04") an arrangement of similar objects a row tiers
Synset('bank.n.05') a supply stock held reserve future use (especially

emergencies)
Synset('bank.n.06') the funds held by a gambling house the dealer some gambling

games

Synset('bank.n.07') a slope the turn of a road track; the outside higher than
the inside order to reduce the effects of centrifugal force

Synset('savings_bank.n.02') a container (usually with a slot the top) keeping

money at home
Synset('bank.n.09') a building which the business of banking transacted
Synset('bank.n.10") a flight maneuver; aircraft tips laterally about its longitudinal
axis (especially turning)
Synset('bank.v.01"') tip laterally
Synset('bank.v.02"') enclose with a bank

Marina Sedinkina- Folien von Desislava Zhekova - age Processing

Lesk Algorithm

Lesk Algorithm

Check implementation via
http://www.nltk.org/_modules/nltk/wsd.html

lesk (context_sentence, ambiguous_word, pos=None,
synsets=None) :

—_

2 context = set(context_sentence)

3 synsets None:

4 synsets = wordnet.synsets (ambiguous_word)

5 pos:

6 synsets = [ss ss synsets str(ss.pos()) ==
pos]

7 synsets:

8 None

9

10 _, sense = max(

11 (len(context.intersection(ss.definition ().split()))

, SS) ss synsets)
12 sense

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 38/75

http://www.nltk.org/_modules/nltk/wsd.html

Lesk Algorithm

Lesk Algorithm

@ Information derived from a dictionary is insufficient for high quality
Word Sense Disambiguation (WSD).

@ Lesk reports accuracies between 50% and 70%.

@ Optimizations: to expand each word in the context with a list of
synonyms

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 39/75

Finding Hypernyms with WordNet

TASK TO SOLVE

In the Wikipedia article on Ada Lovelace,

e how many words refer to a relative? (excluding
names)

e how many words refer to an illness?
e how many words refer to a science?

In each case: which words?

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

Finding Hypernyms with WordNet

TASK TO SOLVE

In the Wikipedia article on Ada Lovelace,

e how many words refer to a relative? (excluding
names)

e how many words refer to an illness?
e how many words refer to a science?

In each case: which words?

Let’s solve this using WordNet...

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

Finding Hypernyms with WordNet

Step 1: Read in file

Read ada_lovelace.txt as one text string.

No o~ WON =

>>> text

"Augusta Ada King, Countess of Lovelace (10 December 1815
27 November 1852), born Augusta Ada Byron and

now commonly known as Ada Lovelace, was an

English mathematician and writer chiefly known

for her work on Charles Babbage's early mechanical
general—purpose computer, the Analytical Engine. .. "

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 41/75

Finding Hypernyms with WordNet

Step 2: Sentence Spilitting

Split the text into sentences: nltk.sent_tokenize(text)

>>> sentences [:3]

["Augusta Ada King, Countess of Lovelace (10 December
1815 27 November 1852), born Augusta Ada Byron

and now commonly known as Ada Lovelace, was an English
mathematician and writer chiefly known for her work on
Charles Babbage's early mechanical general—purpose
computer, the Analytical Engine.", 'Her notes on

the engine include what is recognised as the first
algorithm intended to be carried out by a machine. ',
"Because of this, she is often described as the
world 's first computer programmer.", ..]

- O ©W o NO O~ WN =

_

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 42/75

Finding Hypernyms with WordNet

Step 3: Tokenize

Split the sentences into tokens: nltk.word_tokenize(text)
Create one list of tokens (containing all tokens of the text).

1 == tokens

28 ['Augusta'’, 'Ada', 'King', ',', 'Countess', 'of',
<} 'Lovelace', '(', '10', 'December', '1815', '27"',
“8 'November', '1852', ")', ',', 'born', 'Augusta',
8 'Ada’', 'Byron', 'and', 'now', ‘commonly', 'known',
8 'as', 'Ada', 'Lovelace', ',', 'was', 'an',

74 'English', 'mathematician', 'and', 'writer',

8 'chiefly', 'known', 'for', 'her', 'work', 'on',

N 'Charles', 'Babbage', "'s", 'early', 'mechanical',
08 'general—purpose', 'computer', ',', 'the',

i8N 'Analytical ', 'Engine', '.', 'Her', 'notes', 'on',
28 'the', 'engine', 'include', 'what', 'is',

ikl 'recognised’', 'as', 'the', 'first', ‘'algorithm',
Y 'intended', 'to', 'be', 'carried', 'out',

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 43/75

Finding Hypernyms with WordNet

Step 4: Part-of-Speech tagging

Find the POS-tag of each token using NLTK’s recommended POS
tagger.

pos_tags = nltk.pos_tag(tokens)
pos_tags

[("Augusta’, 'NNP'), ('Ada’, 'NNP'), ('King', 'NNP'),
& '), ('Countess', 'NNP'), ('of', 'IN'),
("Lovelace ', 'NNP'), ('(', 'NNP'), ('10', 'CD'),
('December', 'NNP'), ('1815', 'CD'), ('27', 'CD'),
("November', 'NNP'), ('1852", 'CD'), (*)', 'CD'),
('
(
('

o N O~ WN =

, ',"), ('born', 'NN'), ('Augusta', 'NNP'),
Ada', '‘NNP'), ('Byron', 'NNP'), ('and', 'CC'"),
now', 'RB"), ('commonly', 'RB'), ('known',
VBN) ('as', "IN"), ('Ada', 'NNP"), ..]

Print out all the nouns occurring in the text.

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 44/75

Finding Hypernyms with WordNet

Step 4: Part-of-Speech tagging

N[.. (',', ',"), ('born', 'NN"), ('Augusta', 'NNP'),
2N ('Ada', 'NNP'), ('Byron', 'NNP'), ('and', 'CC"),

<8 ('now', 'RB'), ('commonly', 'RB"), ('known',

‘4 'VBN'), ('as', 'IN'), ('Ada', 'NNP'), ..]

@ CC - coordinating conjunction
RB — adverb

IN — preposition

NN — noun

JJ — adjective

VB — verb

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 45/75

Finding Hypernyms with WordNet

Step 4: Part-of-Speech tagging

NLTK provides documentation for each tag, which can be queried
using the tag, e.g:

N >>> nltk.help.upenn_tagset('NN")

22 NN: noun, common, singular mass

3 common—carrier cabbage knuckle—duster Casino
afghan shed thermostat investment slide
humour falloff slick wind hyena override
subhumanity machinist

‘8 >>> nltk.help.upenn_tagset('CC")

53 CC: conjunction, coordinating
6 & both but either et less minus neither
nor plus so therefore times v. versus vs.

whether yet

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 46/75

Finding Hypernyms with WordNet

Step 4: Part-of-Speech tagging

Some POS tags denote variation of the same word type, e.g. NN,
NNS, NNP, NNPS, such can be looked up via regular expressions.

1 >>> nltk.help.upenn_tagset('NN=«")

22 NN: noun, common, singular mass

K] common—carrier cabbage knuckle—duster Casino
“8 NNP: noun, proper, singular

5 Motown Venneboerger Czestochwa Ranzer Conchita
G| NNPS: noun, proper, plural

7 Americans Americas Amharas Amityvilles

8 NNS: noun, common, plural

9 undergraduates scotches bric—a—brac

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 47175

Finding Hypernyms with WordNet

Step 4: Lemmatize

Now, put the lemma of each noun from the text into one list.

o ~NOoO O~ WN =

nltk .stem.wordnet WordNetLemmatizer
nltk .corpus wordnet

lemmatizer = WordNetLemmatizer ()

your code ...

lemmatizer.lemmatize (lemma, wordnet.NOUN)

your code ...

>>> noun_lemmas

["Augusta', 'Ada', 'King', 'Countess', 'Lovelace'
"(', 'December', 'November', 'born', 'Augusta',
'Ada’, 'Byron', 'Ada', 'Lovelace',
'mathematician', 'writer', 'work', 'Charles"',
'Babbage ', 'computer', ..]

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 48/75

Finding Hypernyms with WordNet

Ada Lovelace Task: Hypernyms

These are the three hypernyms of interest:
(as there are multiple synsets for a lemma, we pick the first one
in each list returned by n1tk.wordnet)

science wordnet.synsets ("science", pos='n')[0]
illness wordnet.synsets("illness", pos='n")[0]

il relative = wordnet.synsets("relative", pos='n"')[0]
2 ")
3 ")

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

Finding Hypernyms with WordNet

Ada Lovelace Task: Hypernyms

These are the three hypernyms of interest:
(as there are multiple synsets for a lemma, we pick the first one
in each list returned by n1tk.wordnet)

science wordnet.synsets ("science", pos='n')[0]
illness wordnet.synsets("illness", pos='n")[0]

il relative = wordnet.synsets("relative", pos='n"')[0]
2
3

How can we find out whether one synset is a hyponym of
another?

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 49/75

Finding Hypernyms with WordNet

Ada Lovelace Task: Hypernym Code

hypernymOf (synset1, synset2):
""" Returns True if synset2 is a hypernym of
synsetl, or if they are the same synset.
Returns False otherwise. """
synsetl == synset2:
True
hypernym synset1.hypernyms() :
synset2 == hypernym:
True
hypernymOf (hypernym, synset2):
True

0o ~NoO O~ WD =

False

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 50/75

Finding Hypernyms with WordNet

Ada Lovelace Task: Finding Hypernyms

Reminder:
@ We have a list of the lemmas of all nouns, noun_ lemmas.
@ Retrieve the synsets for each lemma.

e Check whether it’s a hyponym of one of the three synsets of
interest.

@ Counts the relevant nouns, and collect them.

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 51/75

Relation Extraction with spaCy

Tokenization with spaCy

spacy

nlp = spacy.load('en_core_web_sm")
doc = nlp(u'Apple is looking at buying U.K. startup for $1 billion

")
token doc:
(token.text)
>>>
Apple
looking
at
buying
U.K.

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

Relation Extraction with spaCy

Tokenization with spaCy

@ Does the substring match a tokenizer exception rule? (U.K.)
@ Can a prefix, suffix or infix be split off? (e.g. punctuation)

| tets [0 [=T

|| tets |[oo || to
I_Iﬁ I

et s || g0 || 10 [surrix

et s | g0 || 10 [sureix

et s | g0 || 10

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 53/75

Relation Extraction with spaCy

Tokenization with spaCy

@ Tokenizer exceptions strongly depend on the specifics of the
individual language

@ Global and language-specific tokenizer data is supplied via the
language data in spacy/lang

LANGUAGE CODE LANGUAGE DATA MODELS
English en lang/en </> 4 models
German de lang/de <> 1 model
Spanish es lang/es <> 2 models
Portuguese pt lang/pt <> 1 model
French fr lang/fr <> 2 models

Italian i lang/it <> 1 model

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 54/75

Relation Extraction with spaCy

Adding special case tokenization rules

@ The tokenizer exceptions define special cases like "don’t" in
English, which needs to be split into two tokens: {ORTH: do} and
{ORTH: n't, LEMMA: not}

spacy
spacy . symbols ORTH, LEMMA, POS, TAG

nlp = spacy.load('en_core_web_sm")
doc = nlp(u'gimme that') # phrase to tokenize

([w. text w doc]) # ['gimme', 'that']

add special case rule

special_case = [{ORTH: u'gim', LEMMA: u'give', POS: u'VERB'},
{ORTH: u'me'}]

nlp.tokenizer.add_special_case(u'gimme', special_case)

O©CoONOOUAWN =

check new tokenization
([w. text w nlp (u'gimme that')])#['gim', 'me’, 'that ']

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 55/75

Relation Extraction with spaCy

Adding special case tokenization rules

1
2
]
4
5

doc = nlp(u'l like New York in Autumn.")
span = doc[2:4]
span.merge ()

len(doc) == 6

doc[2].text == 'New York'

Marina Sedinkina- Folien von Desislava Zhekova -

Language Processing and Python

Relation Extraction with spaCy

Relation extraction with spaCy

TASK TO SOLVE

Extract money and currency values (entities labelled as MONEY) and
find the noun phrase they are referring to - for example:

“Net income was $9.4 million compared to the prior year of $2.7
million.”

$9.4 million — Net income.

$2.7 million — the prior year

How can we solve this task?

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 57/75

Relation Extraction with spaCy

Relation extraction with spaCy

TASK TO SOLVE

Extract money and currency values (entities labelled as MONEY) and
find the noun phrase they are referring to - for example:

“Net income was $9.4 million compared to the prior year of $2.7
million.”

$9.4 million — Net income.

$2.7 million — the prior year

@ Step 1: use spaCy’s named entity recognizer to extract money
and currency values (entities labelled as MONEY)

@ Step2: use spaCy’s dependency parser to find the noun phrase
they are referring to.

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 58/75

Relation Extraction with spaCy

Relation extraction with spaCy

Step 1: use spaCy’s named entity recognizer to extract money and
currency values (entities labelled as MONEY)

spacy
model = spacy.load('en_core_web_sm")

1

2

]

‘N doc = nlp(u'Net income was $9.4 million compared to
the prior year of $2.7 million.")

5 (doc.ents)
G| >>> $9.4 million, the prior year, $2.7 million
7
8 ([token.ent_type_ token doc])
el [, "', "', 'MONEY', 'MONEY', 'MONEY', '', '', 'DATE
', 'DATE', 'DATE', '', 'MONEY', 'MONEY', 'MONEY',
l|]

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 59/75

Relation Extraction with spaCy

Relation extraction with spaCy

Step2: use spaCy’s dependency parser to find the noun phrases

1 spacy

22 model = spacy.load('en_core_web_sm")

]

’N doc = nlp(u'Net income was $9.4 million compared to
the prior year of $2.7 million.")

[noun_phrase doc.noun_chunks:

6 (noun_phrase)

7

) Net income

°} the prior year

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

Relation Extraction with spaCy

Relation extraction with spaCy

Step 3: convert MONEY phrases and noun phrases to one token

spacy
model = spacy.load('en_core_web_sm"')

doc = nlp(u'Net income was $9.4 million compared to
the prior year of $2.7 million.")
#your code
token doc:
(token.text)

Net income
was
$9.4 million

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 61/75

Relation Extraction with spaCy

Relation extraction with spaCy

Step4: link named entities (MONEY) to the noun phrases they are
referring to: use dependency labels

1 spacy displacy
2| displacy.serve(doc, style='dep')

prep
nsubj attr /
Net income was $9.4 million compared
ADJ VERB SYM VERB

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 62/75

Relation Extraction with spaCy

Relation extraction with spaCy

@ An attribute (attr) is a noun phrase that is a non-VP (verbal
phrase) predicate usually following a copula verb such as “to be”

@ A nominal subject (nsubj) is a noun phrase which is the syntactic
subject of a clause.

prep
nsubj attr /
Net income was $9.4 million compared
ADJ VERB SYM VERB

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 63/75

Relation Extraction with spaCy

Relation extraction with spaCy

Step4: link named entities (MONEY) to the noun phrases they are
referring to: use dependency labels

spacy
model = spacy.load('en_core_web_sm")

doc = nlp(u'Net income was $9.4 million compared to
the prior year of $2.7 million.")
token doc:
(token.text, token.dep_, token.head.text,
[el el token.head. lefts])

Net income nsubj was [Net income]
was ROOT was [Net income]
$9.4 million attr was [Net income]

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 64/75

Relation Extraction with spaCy

Relation extraction with spaCy

token | token.dep_ | token.head | token.head.lefts
Net income nsubj was [Net income]
was ROOT was [Net income]
$9.4 million attr was [Net income]
prep
f\s_ubj\ attr /
Net income was $9.4 million compared
ADJ VERB SYM VERB

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

Relation Extraction with spaCy

Relation extraction with spaCy

token | token.dep_ | token.head | token.head.lefts
Net income nsubj was [Net income]
was ROOT was [Net income]
$9.4 million attr was [Net income]
prep
f\s_ubj\ attr /
Net income was $9.4 million compared
ADJ VERB SYM VERB

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

Relation Extraction with spaCy

Relation extraction with spaCy

token | token.dep_ | token.head | token.head.lefts
Net income nsubj was [Net income]
was ROOT was [Net income]
$9.4 million attr was [Net income]
prep
f\s_ubj\ attr /
Net income was $9.4 million compared
ADJ VERB SYM VERB

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

Relation Extraction with spaCy

Relation extraction with spaCy

@ An object of a preposition (pobj) is a noun phrase that modifies
the head of a prepositional phrase, which is usually a preposition.

@ A prepositional modifier (prep) is any prepositional phrase that
modifies the meaning of its head.

the prior year of $2.7 million.

DET ADP SYM

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 68/75

Relation Extraction with spaCy

Relation extraction with spaCy

token | token.dep_ | token.head | token.head.lefts
the prior year pobj to 1
of prep | the prior year 0
$2.7 million pobj of 1
the prior year of $2.7 million.
DET ADP SYM

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 69/75

Relation Extraction with spaCy

Relation extraction with spaCy

token | token.dep_ | token.head | token.head.lefts
the prior year pobj to 1
of prep | the prior year 0
$2.7 million pobj of 1
the prior year of $2.7 million.
DET ADP SYM

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 70/75

Relation Extraction with spaCy

Relation extraction with spaCy

token | token.dep_ | token.head | token.head.lefts
the prior year pobj to 1
of prep | the prior year 0
$2.7 million pobj of 0

the prior year

Marina Sedinkina- Folien von Desislava Zhekova -

DET

of

ADP

$2.7 million.
SYM

Language Processing and Python 71/75

Relation Extraction with spaCy

Relation extraction with spaCy

@ From which sentences the information will be extracted?
e Research and product development expenses were $6 million.
o Net loss for the year ended December 31, 2017 was $11 million.
e an increase of $0.4 million
e greater by $2.9 million
@ What about a direct object (dobj)? It is a noun phrase that is the
accusative object of the verb.
o Revenue exceeded twelve billion dollars.

nsubj dobj

Revenue exceeded twelve billion dollars.

NOUN VERB NUM

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

Relation Extraction with spaCy

Conclusion

@ WordNet is a large lexical database where nouns, verbs,
adjectives and adverbs are grouped into sets of synonyms:
e word sense disambiguation - Lesk Algorithm (also implemented
in NLTK)
e find hypernyms and hyponyms

@ spaCy is open-source library for advanced Natural Language
Processing (NLP) in Python

@ use pre-trained models (e.g. en_core_web_sm)

e use the models to preprocess the text: e.g. tokenization,
pos-tagging and lemmatization

@ customize tokenizer

@ use the models for information extraction: named entities,
dependency labels (use both for relation extraction)

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 73/75

Relation Extraction with spaCy

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python 74/75

References

References

@ http://www.nltk.org/book/
@ https://github.com/nltk/nltk
@ https://spacy.io/

Marina Sedinkina- Folien von Desislava Zhekova - Language Processing and Python

http://www.nltk.org/book/
https://github.com/nltk/nltk
https://spacy.io/

	WordNet
	Lesk Algorithm
	Finding Hypernyms with WordNet
	Relation Extraction with spaCy
	References

