
Homework 9:
WordNet

Benjamin Roth, Marina Sedinkina
Symbolische Programmiersprache

Due: Thursday January 10, 2017, 12:00

In this exercise you will:

• measure semantic similarity of words using WordNet

• find hyponyms of the given hypernyms in the text

This homework will be graded using unit tests by running: python3 -m unittest -v
hw09_wordnet/test_wordnet.py

Exercise 1: WordNet semantic similarity [8 points]

Use the predefined path-based similarity measures (accessible with the use of
synset1.path_similarity(synset2)) to score the similarity of each of the following

pairs of words: car-automobile, gem-jewel, journey-voyage, boy-lad, coast-shore, asylum-
madhouse, magician-wizard, midday-noon, furnace- stove, food-fruit, bird-cock, bird-
crane, tool-implement, brother-monk, lad- brother, crane-implement, journey-car, monk-
oracle, cemetery-woodland, food- rooster, coast-hill, forest-graveyard, shore-woodland,
monk-slave, coast-forest, lad-wizard, chord-smile, glass-magician, rooster-voyage, noon-
string.

1. In noun_similarity.py implement the function get_similarity_scores(pairs)
so that it ranks the pairs in order of decreasing similarity. Hint: the similarity of
a pair should be represented by the similarity of the most similar pair of synsets
they have. [4 points]

2. In noun_similarity.py implement the function leave_odd_man_out(words) so
that it returns the odd word from the given list of words. Hint: use the imple-
mented function get_similarity_scores(pairs). [4 points]

1



Exercise 2: Finding Hyponyms with WordNet [10 points]

In this exercise, you will write a program to find nouns (hyponyms) that belong to
certain categories (hypernyms) in wordnet. These categories are relative, science and
illness.
Download the file ada_lovelace.txt into the data/ folder of your project. Take

a look at the file hw09_wordnet/find_hyponyms.py. Complete some methods to find
hyponyms:

1. In the class constructor determine all noun lemmas from ada_lovelace.txt fol-
lowing the steps:

• Read text as a string

• Split text into sentences: use nltk.sent_tokenize

• Split sentences into tokens: use nltk.word_tokenize

• Perform POS tagging of tokens

• Lemmatize nouns (any token whose POS tags start with "N"): use WordNetLemmatizer()

• Determine all noun lemmas [6 points]

2. Implement the class method hypernymOf(self,synset1, synset2) by returning
True if synset2 is a hypernym of synset1, or if they are the same synsets. Return
False otherwise. Hint: use synset1.hypernyms(); do not forget to check whether
the hypernym of synset1 is hypernym of synset2 (use recursion). [1 point]

3. Implement the class method get_hyponyms(self,hypernym). This method should
return set of noun lemmas in ada_lovelace.txt that are hyponyms (subordinates)
to the hypernym. [3 points]

The output would then look as follows:

Synset: relative.n.01
Lemmas: father, wife, baby, boy, parent, grandchild, son, relation, relative, Family,
mother, child, girl, half-sister, daughter, husband

Synset: science.n.01
Lemmas: calculus, phrenology, anatomy, Science, science, government, Magnetism, math,
thermodynamics, analysis, mathematics

Synset: illness.n.01
Lemmas: measles, cancer, illness, madness, disease

2


