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Overview

1 What Is Machine Learning?

2 Supervised Learning: Classification

3 Unsupervised Learning: Clustering

4 Supervised: K Nearest Neighbors Algorithm

5 Unsupervised: K-Means
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What Is Machine Learning?

Modeling: model - specification of a mathematical (or probabilistic)
relationship that exists between different variables.

business model: number of users, profit per user, number of
employees ⇒ profit is income minus expenses
poker model: the cards that have been revealed so far, the
distribution of cards in the deck ⇒ win probability
language model in NLP: a probability that a string is a member of a
language (originally developed for the problem of speech recognition)

Machine Learning - creating and using models that are learned from
data (predictive modeling or data mining)
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What Is Machine Learning?

Goal - use existing data to develop models for predicting various
outcomes for new data

Predicting whether an email message is spam or not
Predicting which advertisement a shopper is most likely to click on
Predicting which football team is going to win

Examples in NLP:

???
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What Is Machine Learning?

Goal - use existing data to develop models for predicting various
outcomes for new data

Predicting whether an email message is spam or not
Predicting which advertisement a shopper is most likely to click on
Predicting which football team is going to win

Examples in NLP:

Speech Recognition

Language Identification

Machine Translation

Document Summarization

Question Answering

Sentiment Detection

Text Classification
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Approaches

supervised: data labeled with the correct answers to learn from
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Approaches

unsupervised: no label given, purely based on the given raw data ⇒ find
common structure in data
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Unsupervised Learning: General Examples

you see a group of people: divide them into groups
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Unsupervised Learning: General Examples

cluster city names, trees

cluster similar blog posts: understand what the users are blogging
about.
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Supervised: K Nearest Neighbors Classification

General Idea

predict how I’m going to vote!

approach - look at my neighbors are planning to vote

imagine you know:

my age
my income
how many kids I have

new approach - look at those neighbors with similar features → better
prediction!
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Supervised: K Nearest Neighbors Classification

General Idea

predict how I’m going to vote!

approach - look at my neighbors are planning to vote

better idea???

imagine you know:

my age
my income
how many kids I have

new approach - look at those neighbors with similar features → better
prediction!
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Nearest Neighbors: Classification rule

classify a new object

find the object in the training set that is most similar

assign the category of this nearest neighbor

Marina Sedinkina (LMU) Unsupervised vs. Supervised Learning November 27, 2018 12 / 66



Nearest Neighbors: Classification rule

classify a new object

find the object in the training set that is most similar

assign the category of this nearest neighbor

Marina Sedinkina (LMU) Unsupervised vs. Supervised Learning November 27, 2018 12 / 66



Nearest Neighbors: Classification rule

classify a new object

find the object in the training set that is most similar

assign the category of this nearest neighbor

Marina Sedinkina (LMU) Unsupervised vs. Supervised Learning November 27, 2018 12 / 66



K Nearest Neighbor (KNN) Classification

Take k closest neighbors instead of one
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K Nearest Neighbor (KNN) Classification

k = 5; 10
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K Nearest Neighbor (KNN) Classification: Data points

Data points are vectors in some finite-dimensional space.

’+’ and ’-’ objects are 2-dimensional (2-d) vectors:
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Data points

if you have the heights, weights, and ages of a large number of
people, treat your data as 3-dimensional vectors (height, weight,
age):

h e i g h t w e i g h t a g e p o i n t = [ 7 0 , # kg
170 , # cm,

40 ] # yea r s
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Data points: One-hot encoding

Task: Represent each word from data as a vector (data point)

Form vocabulary (word types) from data:

data : The q u i c k q u i c k brown f o x

Vocab(s) =


“The”

“quick”

“brown”

“fox”

One-hot vector is a vector filled with 0s, except for a 1 at the
position associated with word

Marina Sedinkina (LMU) Unsupervised vs. Supervised Learning November 27, 2018 17 / 66



Data points: One-hot encoding

Task: Represent each word from data as a vector (data point)

Form vocabulary (word types) from data:

data : The q u i c k q u i c k brown f o x

Vocab(s) =


“The”

“quick”

“brown”

“fox”

One-hot vector is a vector filled with 0s, except for a 1 at the
position associated with word

Marina Sedinkina (LMU) Unsupervised vs. Supervised Learning November 27, 2018 17 / 66



Data points: One-hot encoding

Task: Represent each word from data as a vector (data point)

Form vocabulary (word types) from data:

data : The q u i c k q u i c k brown f o x

Vocab(s) =


“The”

“quick”

“brown”

“fox”

One-hot vector is a vector filled with 0s, except for a 1 at the
position associated with word

Marina Sedinkina (LMU) Unsupervised vs. Supervised Learning November 27, 2018 17 / 66



Data points: One-hot encoding

1 Task: Represent each word from data as a vector (data point)

2 Form vocabulary (word types) from data:

data : The q u i c k q u i c k brown f o x

Vocab(s) =


“The”

“quick”

“brown”

“fox”

3 One-hot vector is a vector filled with 0s, except for a 1 at the
position associated with word

4 Vocabulary size = 4, one-hot 4-d vector of word ”The” at the
position 0 is ~vThe = (1000):
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Data points: One-hot encoding

1 Task: Represent each word from data as a vector (data point)
2 Form vocabulary (word types) from data:

data : The q u i c k q u i c k brown f o x

Vocab(s) =


“The”

“quick”

“brown”

“fox”

3 One-hot vector is a vector filled with 0s, except for a 1 at the
position associated with word

4 Vocabulary size = 4, one-hot 4-d vector of word ”The” at the
position 0 is ~vThe = (1000):

One-hot representation

~vThe = (1000) ~vquick = (????)
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Data points: One-hot encoding

1 Task: Represent each word from data as a vector (data point)
2 Form vocabulary (word types) from data:

data : The q u i c k q u i c k brown f o x

Vocab(s) =


“The”

“quick”

“brown”

“fox”

3 One-hot vector is a vector filled with 0s, except for a 1 at the
position associated with word

4 Vocabulary size = 4, one-hot 4-d vector of word ”The” at the
position 0 is ~vThe = (1000):

One-hot representation

~vThe = (1000) ~vquick = (0100)
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Data points: One-hot encoding

1 Task: Represent each word from data as a vector (data point)
2 Form vocabulary (word types) from data:

data : The q u i c k q u i c k brown f o x

Vocab(s) =


“The”

“quick”

“brown”

“fox”

3 One-hot vector is a vector filled with 0s, except for a 1 at the
position associated with word

4 Vocabulary size = 4, one-hot 4-d vector of word ”The” at the
position 0 is ~vThe = (1000):

One-hot representation

~vThe = (1000) ~vquick = (0100) ~vbrown = (????)
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Data points: One-hot encoding

1 Task: Represent each word from data as a vector (data point)
2 Form vocabulary (word types) from data:

data : The q u i c k q u i c k brown f o x

Vocab(s) =


“The”

“quick”

“brown”

“fox”

3 One-hot vector is a vector filled with 0s, except for a 1 at the
position associated with word

4 Vocabulary size = 4, one-hot 4-d vector of word ”The” at the
position 0 is ~vThe = (1000):

One-hot representation

~vThe = (1000) ~vquick = (0100) ~vbrown = (0010)
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Data points: One-hot encoding

1 Task: Represent each word from data as a vector (data point)
2 Form vocabulary (word types) from data:

data : The q u i c k q u i c k brown f o x

Vocab(s) =


“The”
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“brown”
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Data points: One-hot encoding

1 Task: Represent each word from data as a vector (data point)
2 Form vocabulary (word types) from data:

data : The q u i c k q u i c k brown f o x

Vocab(s) =


“The”

“quick”

“brown”

“fox”

3 One-hot vector is a vector filled with 0s, except for a 1 at the
position associated with word

4 Vocabulary size = 4, one-hot 4-d vector of word ”The” at the
position 0 is ~vThe = (1000):

One-hot representation

~vThe = (1000) ~vquick = (0100) ~vbrown = (0010) ~vfox = (0001)
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Data points: Document representation

How we can represent a document???
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Document representation

fixed set of elements (e.g., documents): D = {d1, ...dn}

document d (data point) is represented by a vector of features:
d ∈ Nk → d = [x1x2...xk ]

feature weights are numerical statistics (TF-IDF)
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Document Representation: binary

Vectorize a text corpus, by turning each text into a vector where the
coefficient for each token could be binary:

from k e r a s . p r e p r o c e s s i n g . t e x t import T o k e n i z e r
t o k e n i z e r = T o k e n i z e r ( )
X t r a i n = [ ” f i r s t t e x t : f i r s t s e n t e n c e ” , ” second t e x t ” ,

” t h i r d t e x t ” ]

t o k e n i z e r . f i t o n t e x t s ( X t r a i n )
t o k e n i z e r . w o r d i n d e x
>>>{ ’ f i r s t ’ : 2 , ’ second ’ : 4 , ’ s e n t e n c e ’ : 3 ,

’ t e x t ’ : 1 , ’ t h i r d ’ : 5}

t o k e n i z e r . t e x t s t o m a t r i x ( X t r a i n , mode= ’ b i n a r y ’ )
>>>a r r a y ( [ [ 0 . , 1 . , 1 . , 1 . , 0 . , 0 . ] ,

[ 0 . , 1 . , 0 . , 0 . , 1 . , 0 . ] ,
[ 0 . , 1 . , 0 . , 0 . , 0 . , 1 . ] ] )
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Document Representation: count

Vectorize a text corpus, by turning each text into a vector where the
coefficient for each token could based on word count:

from k e r a s . p r e p r o c e s s i n g . t e x t import T o k e n i z e r
t o k e n i z e r = T o k e n i z e r ( )
X t r a i n = [ ” f i r s t t e x t : f i r s t s e n t e n c e ” , ” second t e x t ” ,

” t h i r d t e x t ” ]

t o k e n i z e r . f i t o n t e x t s ( X t r a i n )
t o k e n i z e r . w o r d i n d e x
>>>{ ’ f i r s t ’ : 2 , ’ second ’ : 4 , ’ s e n t e n c e ’ : 3 ,

’ t e x t ’ : 1 , ’ t h i r d ’ : 5}

t o k e n i z e r . t e x t s t o m a t r i x ( X t r a i n , mode= ’ count ’ )
>>a r r a y ( [ [ 0 . , 1 . , 2 . , 1 . , 0 . , 0 . ] ,

[ 0 . , 1 . , 0 . , 0 . , 1 . , 0 . ] ,
[ 0 . , 1 . , 0 . , 0 . , 0 . , 1 . ] ] )
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Document Representation: tf-idf

Vectorize a text corpus, by turning each text into a vector where the
coefficient for each token could based on tf-idf:

from k e r a s . p r e p r o c e s s i n g . t e x t import T o k e n i z e r
t o k e n i z e r = T o k e n i z e r ( )
X t r a i n = [ ” f i r s t t e x t : f i r s t s e n t e n c e ” , ” second t e x t ” ,

” t h i r d t e x t ” ]

t o k e n i z e r . f i t o n t e x t s ( X t r a i n )
t o k e n i z e r . w o r d i n d e x
>>>{ ’ f i r s t ’ : 2 , ’ second ’ : 4 , ’ s e n t e n c e ’ : 3 ,

’ t e x t ’ : 1 , ’ t h i r d ’ : 5}

t o k e n i z e r . t e x t s t o m a t r i x ( X t r a i n , mode= ’ t f i d f ’ )
>>[[0 0 .55961579 1.55141507 0.91629073 0 0 ]

[ 0 0 .55961579 0 0 0.91629073 0 ]
[ 0 0 .55961579 0 0 0 0 . 9 1 6 2 9 0 7 3 ] ]
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K Nearest Neighbor (KNN) Classification

def k n n c l a s s i f y ( k , l a b e l e d p o i n t s , n e w p o i n t ) :
””” each l a b e l e d po i n t i s a p a i r ( po in t , l a b e l ) ”””

# o rd e r p o i n t s de s c end i ng
s i m i l a r i t i e s = sorted ( l a b e l e d p o i n t s ,

key=lambda x :
−c o s i n s i m ( x [ 0 ] , n e w p o i n t ) )

# f i n d the l a b e l s f o r the k c l o s e s t
k n e a r e s t l a b e l s = [ l a b e l f o r , l a b e l

i n s i m i l a r i t i e s [ : k ] ]

# and choose one
return c h o o s e o n e ( k n e a r e s t l a b e l s )
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Recall: Sort List of Tuples

>>> s t u d e n t s = [
( ’ j o h n ’ , 2 2 ) ,
( ’ j a n e ’ , 2 0 ) ,
( ’ dave ’ , 2 5 ) ]

>>> sorted ( s t u d e n t s )
[ ( ’ dave ’ , 2 5 ) , ( ’ j a n e ’ , 2 0 ) , ( ’ j o h n ’ , 2 2 ) ]

>>> sorted ( s t u d e n t s , key=lambda x : x [ 1 ] )
[ ( ’ j a n e ’ , 2 0 ) , ( ’ j o h n ’ , 2 2 ) , ( ’ dave ’ , 2 5 ) ]

>>> sorted ( s t u d e n t s , key=lambda x : x [ 1 ] , r e v e r s e=True )
[ ( ’ dave ’ , 2 5 ) , ( ’ j o h n ’ , 2 2 ) , ( ’ j a n e ’ , 2 0 ) ]

>>> sorted ( s t u d e n t s , key=lambda x : −x [ 1 ] )
[ ( ’ dave ’ , 2 5 ) , ( ’ j o h n ’ , 2 2 ) , ( ’ j a n e ’ , 2 0 ) ]
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Requirements. Metric for distance computation

import math
def d o t p r o d u c t ( v1 , v2 ) :

return sum ( [ v a l u e 1 ∗ v a l u e 2 f o r v a lu e 1 , v a l u e 2
i n z ip ( v1 , v2 ) ] )

def c o s i n s i m ( v1 , v2 ) :
#compute c o s i n e s i m i l a r i t y
prod = d o t p r o d u c t ( v1 , v2 )
l e n 1 = math . s q r t ( d o t p r o d u c t ( v1 , v1 ) )
l e n 2 = math . s q r t ( d o t p r o d u c t ( v2 , v2 ) )
return prod / ( l e n 1 ∗ l e n 2 )

c o s i n s i m ( [ 1 , 2 ] , [ 3 , 4 ] )
>>> 0.9838699100999074
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Cosine Similarity

dot product expresses how much the two vectors are pointing in the
same direction

if two documents share a lot of common terms, their tf-idf vectors
will point in a similar direction

cosine similarity = an indicator how close the documents are in the
semantics of their content
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K Nearest Neighbor (KNN) Classification

What if we have two winners (k = 2)?
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K Nearest Neighbor (KNN) Classification

What if we have two winners (k = 2)?

Strategies:

1 Pick one of the winners at random
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K Nearest Neighbor (KNN) Classification

What if we have two winners (k = 2)?

Strategies:

1 Pick one of the winners at random

2 Reduce k until we find a unique winner
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K Nearest Neighbor (KNN) Classification

#l a b e l s s o r t e d from n e a r e s t to f a r t h e s t
l a b e l s = [ ’ s p o r t ’ , ’ c a r s ’ , ’ r e l i g i o n ’

’ r e l i g i o n ’ , ’ s p o r t ’ ]
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K Nearest Neighbor (KNN) Classification

#l a b e l s s o r t e d from n e a r e s t to f a r t h e s t
l a b e l s = [ ’ s p o r t ’ , ’ c a r s ’ , ’ r e l i g i o n ’

’ r e l i g i o n ’ , ’ s p o r t ’ ]

2 winners: ’sport’ and ’religion’

Reduce k until we find a unique winner:

reduced labels = ???
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K Nearest Neighbor (KNN) Classification

#l a b e l s s o r t e d from n e a r e s t to f a r t h e s t
l a b e l s = [ ’ s p o r t ’ , ’ c a r s ’ , ’ r e l i g i o n ’

’ r e l i g i o n ’ , ’ s p o r t ’ ]

2 winners: ’sport’ and ’religion’

Reduce k until we find a unique winner

reduced labels = labels[:-1]

p r i n t ( r e d u c e d l a b e l s )

>>> [ ’ s p o r t ’ , ’ c a r s ’ , ’ r e l i g i o n ’ , ’ r e l i g i o n ’ ]
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K Nearest Neighbor (KNN) Classification

#l a b e l s s o r t e d from n e a r e s t to f a r t h e s t
l a b e l s = [ ’ s p o r t ’ , ’ c a r s ’ , ’ r e l i g i o n ’

’ r e l i g i o n ’ , ’ s p o r t ’ ]

2 winners: ’sport’ and ’religion’

Reduce k until we find a unique winner

reduced labels = labels[:-1]

p r i n t ( r e d u c e d l a b e l s )

>>> [ ’ s p o r t ’ , ’ c a r s ’ , ’ r e l i g i o n ’ , ’ r e l i g i o n ’ ]

now 1 winner: ’religion’
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K Nearest Neighbor (KNN) Classification

#l a b e l s s o r t e d from n e a r e s t to f a r t h e s t
l a b e l s = [ ’ s p o r t ’ , ’ c a r s ’ , ’ r e l i g i o n ’ , ’ p o l i t i c s ’ ]

Winner???
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K Nearest Neighbor (KNN) Classification

l a b e l s = [ ’ s p o r t ’ , ’ c a r s ’ , ’ r e l i g i o n ’ , ’ p o l i t i c s ’ ]

Winner:

’sport’
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K Nearest Neighbor (KNN) Classification

l a b e l s = [ ’ s p o r t ’ , ’ c a r s ’ , ’ c a r s ’ , ’ s p o r t ’ ]

Winner:

’cars’
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K Nearest Neighbor (KNN) Classification

def c h o o s e o n e ( l a b e l s ) :
””” l a b e l s a r e o rd e r ed from n e a r e s t to f a r t h e s t ”””

c o u n t s = Counter ( l a b e l s )
winner , w i n n e r c o u n t = c o u n t s . most common ( 1 ) [ 0 ]

# count number o f w inne r s i n a l i s t ,
# i . e . how many words w i th equa l w i nne r coun t ?
. . .

#i f un ique winner , so r e t u r n i t
. . .

#e l s e : r educe the l i s t and t r y aga in ,
# i . e c a l l choose one aga in but w i th reduced l i s t
. . .
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Counter

from c o l l e c t i o n s import Counter
c o l o r s = [ ’ r e d ’ , ’ b l u e ’ , ’ r e d ’ , ’ g r e e n ’ ,

’ b l u e ’ , ’ b l u e ’ , ’ r e d ’ ]
c nt = Counter ( c o l o r s )
p r i n t ( c nt )
>>> Counter ({ ’ r e d ’ : 3 , ’ b l u e ’ : 3 , ’ g r e e n ’ : 1})

most common tuple = c nt . most common ( 1 )
p r i n t ( most common tuple )
>>>[( ’ r e d ’ , 3 ) ]

winner , w i n n e r c o u n t = most common tuple [ 0 ]
p r i n t ( winner , w i n n e r c o u n t )
>>> r e d 3
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Document Classification with KNN

fixed set of elements (e.g., documents): D = {d1, ...dn}
document d (data point) is represented by a vector of features:
d ∈ Nk → d = [x1x2...xk ]

feature weights are numerical statistics (like TF-IDF)

weights are not re-weighted during learning → KNN is
”non-parametric” classifier
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Document Classification with KNN

fixed set of elements (e.g., documents): D = {d1, ...dn}
document d (data point) is represented by a vector of features:
d ∈ Nk → d = [x1x2...xk ]

feature weights are numerical statistics (like TF-IDF)

weights are not re-weighted during learning → KNN is
”non-parametric” classifier

Goal - find the most similar document for a given document d and
assign the same category (1NN classification)
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Unsupervised: K-Means

clustering algorithm

the number of clusters k is chosen in advance

partition the inputs into sets S1, ...,Sk using cluster centroids
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K-Means

K-means clustering technique
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K-Means

k-means clustering technique

1 randomly initialize cluster centroids
2 assign each point to the centroid to which it is closest:

use Euclidean distance to measure the distance

d(p, q) =

√√√√ n∑
i=1

(qi − pi )2 (1)

3 recompute cluster centroids

4 go back to 2 until nothing changes (or it takes too long)
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K-Means

c l a s s KMeans :
””” pe r f o rms k−means c l u s t e r i n g ”””

def i n i t ( s e l f , k ) :
s e l f . k = k # number o f c l u s t e r s
s e l f . means = None # means o f c l u s t e r s

def c l a s s i f y ( s e l f , input ) :
””” r e t u r n the i ndex o f the c l u s t e r
c l o s e s t to the i npu t ( s t ep 2) ”””
return min ( range ( s e l f . k ) ,

key=lambda i :
d i s t a n c e ( input , s e l f . means [ i ] ) )
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Python min() Function

>>> a = [ ( 0 . 2 2 2 2 , 1 ) , ( 0 . 1 1 1 1 , 2 ) , ( 0 . 6 6 6 6 , 3 ) ]
>>> min ( a , key= lambda x : x [ 0 ] )
>>>(0.1111, 2)

>>> min ( a , key= lambda x : x [ 1 ] )
( 0 . 2 2 2 2 , 1)

>>> k c l u s t e r s = 3
>>> i n p u t v e c = [ 1 , 2 , 3 ]
>>> means = [ [ 1 . 5 , 2 . 5 , 3 . 5 ] , [ 4 . 5 , 5 . 5 , 6 . 5 ] , [ 7 . 5 , 8 . 5 , 9 . 5 ] ]

>>> range ( k c l u s t e r s )
[ 0 , 1 , 2 ]

>>> min ( range ( n u m c l u s t e r s ) , key=lambda x :
d i s t a n c e ( i n p u t v e c , means [ x ] ) )
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K-Means

def t r a i n ( s e l f , i n p u t s ) :
# choose k random po i n t s as the i n i t i a l means
s e l f . means = random . sample ( i n p u t s , s e l f . k )#step 1
a s s i g n m e n t s = None
whi le True :

# Find new as s i gnment s
n e w a s s i g n m e n t s = map( s e l f . c l a s s i f y , i n p u t s )
i f a s s i g n m e n t s == n e w a s s i g n m e n t s :

return # I f no th i ng changed , we ’ r e done .

a s s i g n m e n t s = n e w a s s i g n m e n t s
f o r i i n range ( s e l f . k ) : #compute new means

i p o i n t s = [ p f o r p , a i n z ip ( i n p u t s ,
a s s i g n m e n t s ) i f a == i ]

i f i p o i n t s :
s e l f . means [ i ] = mean ( i p o i n t s )
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Map

r = map( func , seq )

import f u n c t o o l s
def f a h r e n h e i t (T ) :

return ( ( 9 . 0 / 5 )∗T + 32)
temp = [ 3 6 . 5 , 37 , 3 7 . 5 , 3 9 ]
F = map( f a h r e n h e i t , temp )

p r i n t ( l i s t ( F ) )
>>> [ 9 7 . 7 , 98 .60000000000001 , 9 9 . 5 , 1 0 2 . 2 ]
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K-Means: Real Example

organize meetup for users

goal - choose 3 meetup locations convenient for all users

c l u s t e r e r = KMeans ( 3 )
c l u s t e r e r . t r a i n ( i n p u t s )
p r i n t ( c l u s t e r e r . means )

you find three clusters and you look for meetup venues near those
locations
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Kmeans with NLTK

from n l t k import c l u s t e r
from n l t k . c l u s t e r import e u c l i d e a n d i s t a n c e
from numpy import a r r a y
v e c t o r s = [ a r r a y ( f ) f o r f i n [ [ 3 , 3 ] , [ 1 , 2 ] , [ 4 , 2 ] ,

[ 4 , 0 ] , [ 2 , 3 ] , [ 3 , 1 ] ] ]
c l u s t e r e r = c l u s t e r . KMeansC lus te re r ( 2 ,

e u c l i d e a n d i s t a n c e )
c l u s t e r s = c l u s t e r e r . c l u s t e r ( v e c t o r s , True )
p r i n t ( ’ C l u s t e r e d : ’ , v e c t o r s )
p r i n t ( ’ As : ’ , c l u s t e r s )
p r i n t ( ’ Means : ’ , c l u s t e r e r . means ( ) )

>>> C l u s t e r e d : [ a r r a y ( [ 3 , 3 ] ) , a r r a y ( [ 1 , 2 ] ) ,
a r r a y ( [ 4 , 2 ] ) , a r r a y ( [ 4 , 0 ] ) , a r r a y ( [ 2 , 3 ] ) , a r r a y ( [ 3 , 1 ] ) ]
>>> As : [ 0 , 0 , 0 , 1 , 0 , 1 ]
>>> Means : [ a r r a y ( [ 2 . 5 , 2 . 5 ] ) , a r r a y ( [ 3 . 5 , 0 . 5 ] ) ]
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Kmeans with NLTK

. . .
# c l a s s i f y a new v e c t o r
v e c t o r = a r r a y ( [ 3 , 3 ] )
p r i n t ( ’ c l a s s i f y (%s ) : ’ % v e c t o r )
p r i n t ( c l u s t e r e r . c l a s s i f y ( v e c t o r ) )

>>> c l a s s i f y ( [ 3 3 ] ) :
>>> 0
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K-Means

Problems

How many clusters to use?

How to initialize cluster centroids?
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Conclusion

K-means is a clustering or classification algorithm?

→ clustering algorithm
partitions points into K clusters: points in each cluster tend to be near
each other
→ unsupervised: points have no external classification

K-nearest neighbors is a clustering or classification algorithm?

→ classification algorithm
determines the classification of a new point
supervised or unsupervised?
supervised: classifies a point based on the known classification of
other points.
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Exercise: Euclidean Distance

d(p, q) =

√√√√ n∑
i=1

(qi − pi )2 (2)

distance between person 1 and 2, 1 and 3, 2 and 3?
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Exercise: Find Centroid

Compute the mean vector of given vectors:

v e c t o r s = [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] ]
c e n t r o i d v e c t o r = ???
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Exercise: Document Representation

Represent the list of documents in binary mode

documents =[” t e s t document1 ” ,
” t e s t document2 ” ,
” t e s t document3 ” ]

t o k e n i z e r = T o k e n i z e r ( )
t o k e n i z e r . f i t o n t e x t s ( X t r a i n )
t o k e n i z e r . w o r d i n d e x
>>>{ ’ document1 ’ : 2 , ’ document2 ’ : 3 ,

’ document3 ’ : 4 , ’ t e s t ’ : 1}
d o c m a t r i x = ???
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Supervised vs. Unsupervised

What is the main difference between supervised and unsupervised learning?
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Exercise: KNN Classifier

k = 3, the green point = ???

k = 5, the green point = ???
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