Unit Testing

Benjamin Roth

CIS LMU

= = = E DA
Benjamin Roth (CIS LMU) Unit Testing

Unit Testing: Motivation

@ It is unavoidable to have errors in code.

@ Unit-testing helps you ...

.. to catch certain errors that are easy to automatically detect.

.. to be more clear about the specification of the intended functionality.
.. to be more stress-free when developing.

. to check that functionality does not change when you re-organize or
optlmlze code.

v

v

v

@ Today, we will lok at two frameworks for unit testing that come
prepackaged with Python
© doctest: A simple testing framework, where example function calls
(together with their expected output) are written into the docstring
documentation, and then are automatically checked.
@ unittest: A framework, where several tests can be grouped together,
and that allows for more complex test cases.

Benjamin Roth (CIS LMU) Unit Testing 2 /15

Simple Tests: the doctest module

@ Searches for pieces of text that look like interactive example Python
sessions inside of the documentation parts of a module.

@ These examples are run and the results are compared against the
expected value.

@ example_module.py

def square(x):
"""Return the square of .

>>> square(2)

4

>>> square(-2)

4

nnn

return x * X

Benjamin Roth (CIS LMU) Unit Testing 3/15

Running the tests

$ python3 -m doctest -v example_module.py
Trying:
square(2)
Expecting:
4
ok
Trying:
square (-2)
Expecting:
4
ok
1 items had no tests:
example_module
1 items passed all tests:
2 tests in example_module.square
2 tests in 2 items.
2 passed and O failed.
Test passed.
$

Benjamin Roth (CIS LMU) Unit Testing 4 /15

Test-Driven Development (TDD)

Write tests first (, implement functionality later)

Add to each test an empty implementation of the function (use the
pass-statement)

The tests initially all fail

Then implement, one by one, the desired functionality

Advantages:
» Define in advance what the expected input and outputs are
» Also think about important boundary cases (e.g. empty strings, empty
sets, float (inf), 0, unexpected inputs, negative numbers)
» Gives you a measure of progress (“65% of the functionality is
implemented”) - this can be very motivating and useful!

Benjamin Roth (CIS LMU) Unit Testing 5/ 15

TDD: Initial empty implementation

@ example_module.py

def square(x):
"""Return the square of x.

>>> square(2)

4

>>> square(-2)

4

nmnn

pass

Benjamin Roth (CIS LMU) Unit Testing

Initially the tests fail

$ python3 -m doctest -v example_module.py
Trying:

square(2)
Expecting:

4

File "/home/ben/tmp/example_module.py", line 4, in example_module.square
Failed example:
square (2)
Expected:
4
Got nothing
Trying:
square (-2)
Expecting:

File "/home/ben/tmp/example_module.py", line 6, in example_module.square
Failed example:
square (-2)
Expected:
4
Got nothing
1 items had no tests:
example_module

1 items had failures:
2 of 2 in example_module.square
2 tests in 2 items.
0 passed and 2 failed.
Test Failed 2 failures.

$

Benjamin Roth (CIS LM Unit Testing 7/ 15

The unittest module

@ Similar to Java's JUnit framework.

@ Most obvious difference to doctest: test cases are not defined inside
of the module which has to be tested, but in a separate module just
for testing.

@ In that module ...

» import unittest
» import the functionality you want to test
» define a class that inherits from unittest.TestCase

*

*
*

This class can be arbitrarily named, but XyzTest is standard, where
Xyz is the name of the module to test.

In XyzTest, write member functions that start with the prefix test. ..
These member functions are automatically detected by the framework
as tests.

The tests functions contain assert-statements

Use the assert-functions that are inherited from unittest.TestCase
(do not use the Python built-in assert here)

Benjamin Roth (CIS LMU) Unit Testing 8 /15

Different types of asserts

Method Checks that New in
assertEqual(a, b) a=>b
assertNotEqual(a, b) al=b
assertTrue(x) bool(x) is True
assertFalse(x) bool(x) is False
assertIs(a, b) ais b 31
assertIsNot(a, b) a is not b 31
assertIsNone(x) X 1s None 31
assertIsNotNone(x) X 1is not None 31
assertIn(a, b) ainb 31
assertNotIn(a, b) a not in b 31
assertIsInstance(a, b) isinstance(a, b) 3.2
assertNotIsInstance(a, b) not isinstance(a, b) 3.2
Question: ... what is the difference between “a == b" and “a is b"?

Benjamin Roth (CIS LMU) Unit Testing 9 /15

Example: using unittest

@ test_square.py

import unittest
from example_module import square

class SquareTest(unittest.TestCase):
def testCalculation(self):
self.assertEqual (square(0), 0)
self.assertEqual (square(-1), 1)
self.assertEqual (square(2), 4)

Benjamin Roth (CIS LMU) Unit Testing 10 / 15

Example: running the tests initially

@ test_square.py

$ python3 -m unittest -v test_square.py
testCalculation (test_square.SquareTest) ... FAIL

FAIL: testCalculation (test_square.SquareTest)

Traceback (most recent call last):
File "/home/ben/tmp/test_square.py", line 6, in testCalculation
self.assertEqual (square(0), 0)
AssertionError: None != 0

Ran 1 test in 0.000s

FAILED (failures=1)
$

Benjamin Roth (CIS LMU) Unit Testing 11 /15

Example: running the tests with implemented functionality

$ python3 -m unittest -v test_square.py
testCalculation (test_square.SquareTest) ... ok

Ran 1 test in 0.000s

Benjamin Roth (CIS LMU) Unit Testing 12 / 15

SetUp and Teardown

@ setUp and teardown are recognized and exectuted automatically
before (after) the unit test are run (if they are implemented).
@ setUp: Establish pre-conditions that hold for several tests.
Examples:
» Prepare inputs and outputs
» Establish network connection
» Read in data from file
o tearDown (less frequently used): Code that must be executed after
tests finished
Example: Close network connection

Benjamin Roth (CIS LMU) Unit Testing 13 /15

Example using setUp and tearDown

class SquareTest(unittest.TestCase):
def setUp(self):
self.inputs_outputs = [(0,0),(-1,1),(2,4)]

def testCalculation(self):
for i,o0 in self.inputs_outputs:
self .assertEqual (square(i),o)

def tearDown(self):

Just as an example.
self.inputs_outputs = None

Benjamin Roth (CIS LMU) Unit Testing 14 / 15

Summary

@ Test-driven development
@ Using doctest module
@ Using unittest module

@ Also have a look at the online documentation:
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/doctest.html

@ Questions?

Benjamin Roth (CIS LMU) Unit Testing 15 / 15

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/doctest.html

