
Unit Testing

Benjamin Roth

CIS LMU

Benjamin Roth (CIS LMU) Unit Testing 1 / 15

Unit Testing: Motivation

It is unavoidable to have errors in code.
Unit-testing helps you ...

I ... to catch certain errors that are easy to automatically detect.
I ... to be more clear about the specification of the intended functionality.
I ... to be more stress-free when developing.
I ... to check that functionality does not change when you re-organize or

optimize code.
Today, we will lok at two frameworks for unit testing that come
prepackaged with Python

1 doctest: A simple testing framework, where example function calls
(together with their expected output) are written into the docstring
documentation, and then are automatically checked.

2 unittest: A framework, where several tests can be grouped together,
and that allows for more complex test cases.

Benjamin Roth (CIS LMU) Unit Testing 2 / 15

Simple Tests: the doctest module

Searches for pieces of text that look like interactive example Python
sessions inside of the documentation parts of a module.
These examples are run and the results are compared against the
expected value.
example_module.py
def square(x):

"""Return the square of x.

>>> square(2)
4
>>> square(-2)
4

"""
return x * x

Benjamin Roth (CIS LMU) Unit Testing 3 / 15

Running the tests
$ python3 -m doctest -v example_module.py
Trying:

square(2)
Expecting:

4
ok
Trying:

square(-2)
Expecting:

4
ok
1 items had no tests:

example_module
1 items passed all tests:

2 tests in example_module.square
2 tests in 2 items.
2 passed and 0 failed.
Test passed.
$

Benjamin Roth (CIS LMU) Unit Testing 4 / 15

Test-Driven Development (TDD)

Write tests first (, implement functionality later)
Add to each test an empty implementation of the function (use the
pass-statement)
The tests initially all fail
Then implement, one by one, the desired functionality
Advantages:

I Define in advance what the expected input and outputs are
I Also think about important boundary cases (e.g. empty strings, empty

sets, float(inf), 0, unexpected inputs, negative numbers)
I Gives you a measure of progress (“65% of the functionality is

implemented”) - this can be very motivating and useful!

Benjamin Roth (CIS LMU) Unit Testing 5 / 15

TDD: Initial empty implementation

example_module.py
def square(x):

"""Return the square of x.

>>> square(2)
4
>>> square(-2)
4

"""
pass

Benjamin Roth (CIS LMU) Unit Testing 6 / 15

Initially the tests fail
$ python3 -m doctest -v example_module.py
Trying:

square(2)
Expecting:

4
**
File "/home/ben/tmp/example_module.py", line 4, in example_module.square
Failed example:

square(2)
Expected:

4
Got nothing
Trying:

square(-2)
Expecting:

4
**
File "/home/ben/tmp/example_module.py", line 6, in example_module.square
Failed example:

square(-2)
Expected:

4
Got nothing
1 items had no tests:

example_module
**
1 items had failures:

2 of 2 in example_module.square
2 tests in 2 items.
0 passed and 2 failed.
Test Failed 2 failures.
$

Benjamin Roth (CIS LMU) Unit Testing 7 / 15

The unittest module

Similar to Java’s JUnit framework.
Most obvious difference to doctest: test cases are not defined inside
of the module which has to be tested, but in a separate module just
for testing.
In that module ...

I import unittest
I import the functionality you want to test
I define a class that inherits from unittest.TestCase

F This class can be arbitrarily named, but XyzTest is standard, where
Xyz is the name of the module to test.

F In XyzTest, write member functions that start with the prefix test...
F These member functions are automatically detected by the framework

as tests.
F The tests functions contain assert-statements
F Use the assert-functions that are inherited from unittest.TestCase

(do not use the Python built-in assert here)

Benjamin Roth (CIS LMU) Unit Testing 8 / 15

Different types of asserts

Question: ... what is the difference between “a == b” and “a is b”?

Benjamin Roth (CIS LMU) Unit Testing 9 / 15

Example: using unittest

test_square.py

import unittest
from example_module import square

class SquareTest(unittest.TestCase):
def testCalculation(self):

self.assertEqual(square(0), 0)
self.assertEqual(square(-1), 1)
self.assertEqual(square(2), 4)

Benjamin Roth (CIS LMU) Unit Testing 10 / 15

Example: running the tests initially

test_square.py

$ python3 -m unittest -v test_square.py
testCalculation (test_square.SquareTest) ... FAIL

==
FAIL: testCalculation (test_square.SquareTest)
--
Traceback (most recent call last):

File "/home/ben/tmp/test_square.py", line 6, in testCalculation
self.assertEqual(square(0), 0)

AssertionError: None != 0

--
Ran 1 test in 0.000s

FAILED (failures=1)
$

Benjamin Roth (CIS LMU) Unit Testing 11 / 15

Example: running the tests with implemented functionality

$ python3 -m unittest -v test_square.py
testCalculation (test_square.SquareTest) ... ok

--
Ran 1 test in 0.000s

OK
$

Benjamin Roth (CIS LMU) Unit Testing 12 / 15

SetUp and Teardown

setUp and teardown are recognized and exectuted automatically
before (after) the unit test are run (if they are implemented).
setUp: Establish pre-conditions that hold for several tests.
Examples:

I Prepare inputs and outputs
I Establish network connection
I Read in data from file

tearDown (less frequently used): Code that must be executed after
tests finished
Example: Close network connection

Benjamin Roth (CIS LMU) Unit Testing 13 / 15

Example using setUp and tearDown

class SquareTest(unittest.TestCase):
def setUp(self):

self.inputs_outputs = [(0,0),(-1,1),(2,4)]

def testCalculation(self):
for i,o in self.inputs_outputs:

self.assertEqual(square(i),o)

def tearDown(self):
Just as an example.
self.inputs_outputs = None

Benjamin Roth (CIS LMU) Unit Testing 14 / 15

Summary

Test-driven development
Using doctest module
Using unittest module
Also have a look at the online documentation:
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/doctest.html

Questions?

Benjamin Roth (CIS LMU) Unit Testing 15 / 15

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/doctest.html

